Section: Tulip Plugins Library (3) Updated: 19 Jul 2010
Local index Up

## NAME

AdjacencyMatrixImport.cpp - Import a graph coded with matrix.

## SYNOPSIS

### Public Member Functions

bool formatError (const char *s, int curLine)

bool import (const string &name)

### Public Attributes

vector< node > nodes

## Detailed Description

AdjacencyMatrixImport.cpp - Import a graph coded with matrix.

This plugin enables to import a graph coded with a matrix

File format:

The input format of this plugin is an ascii file where each line represents a row of the matrix. In each row, cells must be separated by a space.

Let M(i,j) be a cell of the matrix :

if i==j we define the value of a node.
if i!=j we define a directed edge between node[i] and node[j]

If M(i,j) is real value (0, .0, -1, -1.0), it is stored in the viewMetric property of the graph.

If M(i,j) is a string, it is stored in the viewLabel property of the graph.

Use & to set the viewMetric and viewLabel properties of a node or edge in the same time. If M(i,j) == @ an edge will be created without value

If M(i,j) == # no edge will be created between node[i] and node[j]

EXEMPLE 1 :
A
# B
# # C
Define a graph with 3 nodes (with labels A B C) and without edge.

EXEMPLE 2 :
A
@ B
@ @ C
Define a simple complete graph with 3 nodes (with labels A B C) and no label (or value) on its edges

EXEMPLE 3 :
A # E & 5
@ B
# @ C
Define a graph with 3 nodes and 3 edges, the edge between A and C is named E and has the value 5

HISTORY

Version 1.0: First version replace old adjacency matrix format included in Tulip (no more supported)

TODO :

Author:

David Auber University of Bordeaux I (LaBRI) France

Email:auber@tulip-software.org

LICENCE

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

## Author

Generated automatically by Doxygen for Tulip Plugins Library from the source code.

## Index

NAME
SYNOPSIS
Public Member Functions
Public Attributes
Detailed Description
Constructor & Destructor Documentation