Poster of Linux kernelThe best gift for a Linux geek
PDGETRS

PDGETRS

Section: LAPACK routine (version 1.5) (l) Updated: 12 May 1997
Local index Up
 

NAME

PDGETRS - solve a system of distributed linear equations op( sub( A ) ) * X = sub( B ) with a general N-by-N distributed matrix sub( A ) using the LU factorization computed by PDGETRF  

SYNOPSIS

SUBROUTINE PDGETRS(
TRANS, N, NRHS, A, IA, JA, DESCA, IPIV, B, IB, JB, DESCB, INFO )

    
CHARACTER TRANS

    
INTEGER IA, IB, INFO, JA, JB, N, NRHS

    
INTEGER DESCA( * ), DESCB( * ), IPIV( * )

    
DOUBLE PRECISION A( * ), B( * )
 

PURPOSE

PDGETRS solves a system of distributed linear equations sub( A ) denotes A(IA:IA+N-1,JA:JA+N-1), op( A ) = A or A**T and sub( B ) denotes B(IB:IB+N-1,JB:JB+NRHS-1).

Notes
=====

Each global data object is described by an associated description vector. This vector stores the information required to establish the mapping between an object element and its corresponding process and memory location.

Let A be a generic term for any 2D block cyclicly distributed array. Such a global array has an associated description vector DESCA. In the following comments, the character _ should be read as "of the global array".

NOTATION STORED IN EXPLANATION
--------------- -------------- -------------------------------------- DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
                               DTYPE_A = 1.
CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
                               the BLACS process grid A is distribu-
                               ted over. The context itself is glo-
                               bal, but the handle (the integer
                               value) may vary.
M_A (global) DESCA( M_ ) The number of rows in the global
                               array A.
N_A (global) DESCA( N_ ) The number of columns in the global
                               array A.
MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
                               the rows of the array.
NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
                               the columns of the array.
RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
                               row of the array A is distributed. CSRC_A (global) DESCA( CSRC_ ) The process column over which the
                               first column of the array A is
                               distributed.
LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
                               array.  LLD_A >= MAX(1,LOCr(M_A)).

Let K be the number of rows or columns of a distributed matrix, and assume that its process grid has dimension p x q.
LOCr( K ) denotes the number of elements of K that a process would receive if K were distributed over the p processes of its process column.
Similarly, LOCc( K ) denotes the number of elements of K that a process would receive if K were distributed over the q processes of its process row.
The values of LOCr() and LOCc() may be determined via a call to the ScaLAPACK tool function, NUMROC:

        LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
        LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ). An upper bound for these quantities may be computed by:

        LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A

        LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A

This routine requires square block data decomposition ( MB_A=NB_A ).

 

ARGUMENTS

TRANS (global input) CHARACTER
Specifies the form of the system of equations:
= 'N': sub( A ) * X = sub( B ) (No transpose)
= 'T': sub( A )**T * X = sub( B ) (Transpose)
= 'C': sub( A )**T * X = sub( B ) (Transpose)
N (global input) INTEGER
The number of rows and columns to be operated on, i.e. the order of the distributed submatrix sub( A ). N >= 0.
NRHS (global input) INTEGER
The number of right hand sides, i.e., the number of columns of the distributed submatrix sub( B ). NRHS >= 0.
A (local input) DOUBLE PRECISION pointer into the local
memory to an array of dimension (LLD_A, LOCc(JA+N-1)). On entry, this array contains the local pieces of the factors L and U from the factorization sub( A ) = P*L*U; the unit diagonal elements of L are not stored.
IA (global input) INTEGER
The row index in the global array A indicating the first row of sub( A ).
JA (global input) INTEGER
The column index in the global array A indicating the first column of sub( A ).
DESCA (global and local input) INTEGER array of dimension DLEN_.
The array descriptor for the distributed matrix A.
IPIV (local input) INTEGER array, dimension ( LOCr(M_A)+MB_A )
This array contains the pivoting information. IPIV(i) -> The global row local row i was swapped with. This array is tied to the distributed matrix A.
B (local input/local output) DOUBLE PRECISION pointer into the
local memory to an array of dimension (LLD_B,LOCc(JB+NRHS-1)). On entry, the right hand sides sub( B ). On exit, sub( B ) is overwritten by the solution distributed matrix X.
IB (global input) INTEGER
The row index in the global array B indicating the first row of sub( B ).
JB (global input) INTEGER
The column index in the global array B indicating the first column of sub( B ).
DESCB (global and local input) INTEGER array of dimension DLEN_.
The array descriptor for the distributed matrix B.
INFO (global output) INTEGER
= 0: successful exit
< 0: If the i-th argument is an array and the j-entry had an illegal value, then INFO = -(i*100+j), if the i-th argument is a scalar and had an illegal value, then INFO = -i.


 

Index

NAME
SYNOPSIS
PURPOSE
ARGUMENTS

This document was created by man2html, using the manual pages.
Time: 21:52:12 GMT, April 16, 2011