Poster of Linux kernelThe best gift for a Linux geek
PDLAHRD

PDLAHRD

Section: LAPACK auxiliary routine (version 1.5) (l) Updated: 12 May 1997
Local index Up
 

NAME

PDLAHRD - reduce the first NB columns of a real general N-by-(N-K+1) distributed matrix A(IA:IA+N-1,JA:JA+N-K) so that elements below the k-th subdiagonal are zero  

SYNOPSIS

SUBROUTINE PDLAHRD(
N, K, NB, A, IA, JA, DESCA, TAU, T, Y, IY, JY, DESCY, WORK )

    
INTEGER IA, IY, JA, JY, K, N, NB

    
INTEGER DESCA( * ), DESCY( * )

    
DOUBLE PRECISION A( * ), T( * ), TAU( * ), WORK( * ), Y( * )
 

PURPOSE

PDLAHRD reduces the first NB columns of a real general N-by-(N-K+1) distributed matrix A(IA:IA+N-1,JA:JA+N-K) so that elements below the k-th subdiagonal are zero. The reduction is performed by an orthogo- nal similarity transformation Q' * A * Q. The routine returns the matrices V and T which determine Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T.

This is an auxiliary routine called by PDGEHRD. In the following comments sub( A ) denotes A(IA:IA+N-1,JA:JA+N-1).

 

ARGUMENTS

N (global input) INTEGER
The number of rows and columns to be operated on, i.e. the order of the distributed submatrix sub( A ). N >= 0.
K (global input) INTEGER
The offset for the reduction. Elements below the k-th subdiagonal in the first NB columns are reduced to zero.
NB (global input) INTEGER
The number of columns to be reduced.
A (local input/local output) DOUBLE PRECISION pointer into
the local memory to an array of dimension (LLD_A, LOCc(JA+N-K)). On entry, this array contains the the local pieces of the N-by-(N-K+1) general distributed matrix A(IA:IA+N-1,JA:JA+N-K). On exit, the elements on and above the k-th subdiagonal in the first NB columns are overwritten with the corresponding elements of the reduced distributed matrix; the elements below the k-th subdiagonal, with the array TAU, represent the matrix Q as a product of elementary reflectors. The other columns of A(IA:IA+N-1,JA:JA+N-K) are unchanged. See Further Details. IA (global input) INTEGER The row index in the global array A indicating the first row of sub( A ).
JA (global input) INTEGER
The column index in the global array A indicating the first column of sub( A ).
DESCA (global and local input) INTEGER array of dimension DLEN_.
The array descriptor for the distributed matrix A.
TAU (local output) DOUBLE PRECISION array, dimension LOCc(JA+N-2)
The scalar factors of the elementary reflectors (see Further Details). TAU is tied to the distributed matrix A.
T (local output) DOUBLE PRECISION array, dimension (NB_A,NB_A)
The upper triangular matrix T.
Y (local output) DOUBLE PRECISION pointer into the local memory
to an array of dimension (LLD_Y,NB_A). On exit, this array contains the local pieces of the N-by-NB distributed matrix Y. LLD_Y >= LOCr(IA+N-1).
IY (global input) INTEGER
The row index in the global array Y indicating the first row of sub( Y ).
JY (global input) INTEGER
The column index in the global array Y indicating the first column of sub( Y ).
DESCY (global and local input) INTEGER array of dimension DLEN_.
The array descriptor for the distributed matrix Y.
WORK (local workspace) DOUBLE PRECISION array, dimension (NB)
 

FURTHER DETAILS

The matrix Q is represented as a product of nb elementary reflectors


   Q = H(1) H(2) . . . H(nb).

Each H(i) has the form


   H(i) = I - tau * v * v'

where tau is a real scalar, and v is a real vector with
v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in A(ia+i+k:ia+n-1,ja+i-1), and tau in TAU(ja+i-1).

The elements of the vectors v together form the (n-k+1)-by-nb matrix V which is needed, with T and Y, to apply the transformation to the unreduced part of the matrix, using an update of the form: A(ia:ia+n-1,ja:ja+n-k) := (I-V*T*V')*(A(ia:ia+n-1,ja:ja+n-k)-Y*V').

The contents of A(ia:ia+n-1,ja:ja+n-k) on exit are illustrated by the following example with n = 7, k = 3 and nb = 2:


   ( a   h   a   a   a )

   ( a   h   a   a   a )

   ( a   h   a   a   a )

   ( h   h   a   a   a )

   ( v1  h   a   a   a )

   ( v1  v2  a   a   a )

   ( v1  v2  a   a   a )

where a denotes an element of the original matrix
A(ia:ia+n-1,ja:ja+n-k), h denotes a modified element of the upper Hessenberg matrix H, and vi denotes an element of the vector defining H(i).


 

Index

NAME
SYNOPSIS
PURPOSE
ARGUMENTS
FURTHER DETAILS

This document was created by man2html, using the manual pages.
Time: 21:52:13 GMT, April 16, 2011