Poster of Linux kernelThe best gift for a Linux geek
PDLARFT

PDLARFT

Section: LAPACK auxiliary routine (version 1.5) (l) Updated: 12 May 1997
Local index Up
 

NAME

PDLARFT - form the triangular factor T of a real block reflector H of order n, which is defined as a product of k elementary reflectors  

SYNOPSIS

SUBROUTINE PDLARFT(
DIRECT, STOREV, N, K, V, IV, JV, DESCV, TAU, T, WORK )

    
CHARACTER DIRECT, STOREV

    
INTEGER IV, JV, K, N

    
INTEGER DESCV( * )

    
DOUBLE PRECISION TAU( * ), T( * ), V( * ), WORK( * )
 

PURPOSE

PDLARFT forms the triangular factor T of a real block reflector H of order n, which is defined as a product of k elementary reflectors.

If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;

If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.

If STOREV = 'C', the vector which defines the elementary reflector H(i) is stored in the i-th column of the distributed matrix V, and


   H  =  I - V * T * V'

If STOREV = 'R', the vector which defines the elementary reflector H(i) is stored in the i-th row of the distributed matrix V, and


   H  =  I - V' * T * V

Notes
=====

Each global data object is described by an associated description vector. This vector stores the information required to establish the mapping between an object element and its corresponding process and memory location.

Let A be a generic term for any 2D block cyclicly distributed array. Such a global array has an associated description vector DESCA. In the following comments, the character _ should be read as "of the global array".

NOTATION STORED IN EXPLANATION
--------------- -------------- -------------------------------------- DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
                               DTYPE_A = 1.
CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
                               the BLACS process grid A is distribu-
                               ted over. The context itself is glo-
                               bal, but the handle (the integer
                               value) may vary.
M_A (global) DESCA( M_ ) The number of rows in the global
                               array A.
N_A (global) DESCA( N_ ) The number of columns in the global
                               array A.
MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
                               the rows of the array.
NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
                               the columns of the array.
RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
                               row of the array A is distributed. CSRC_A (global) DESCA( CSRC_ ) The process column over which the
                               first column of the array A is
                               distributed.
LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
                               array.  LLD_A >= MAX(1,LOCr(M_A)).

Let K be the number of rows or columns of a distributed matrix, and assume that its process grid has dimension p x q.
LOCr( K ) denotes the number of elements of K that a process would receive if K were distributed over the p processes of its process column.
Similarly, LOCc( K ) denotes the number of elements of K that a process would receive if K were distributed over the q processes of its process row.
The values of LOCr() and LOCc() may be determined via a call to the ScaLAPACK tool function, NUMROC:

        LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
        LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ). An upper bound for these quantities may be computed by:

        LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A

        LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A

 

ARGUMENTS

DIRECT (global input) CHARACTER*1
Specifies the order in which the elementary reflectors are multiplied to form the block reflector:
= 'F': H = H(1) H(2) . . . H(k) (Forward)
= 'B': H = H(k) . . . H(2) H(1) (Backward)
STOREV (global input) CHARACTER*1
Specifies how the vectors which define the elementary reflectors are stored (see also Further Details):
= 'R': rowwise
N (global input) INTEGER
The order of the block reflector H. N >= 0.
K (global input) INTEGER
The order of the triangular factor T (= the number of elementary reflectors). 1 <= K <= MB_V (= NB_V).
V (input/output) DOUBLE PRECISION pointer into the local memory
to an array of local dimension (LOCr(IV+N-1),LOCc(JV+K-1)) if STOREV = 'C', and (LOCr(IV+K-1),LOCc(JV+N-1)) if STOREV = 'R'. The distributed matrix V contains the Householder vectors. See further details.
IV (global input) INTEGER
The row index in the global array V indicating the first row of sub( V ).
JV (global input) INTEGER
The column index in the global array V indicating the first column of sub( V ).
DESCV (global and local input) INTEGER array of dimension DLEN_.
The array descriptor for the distributed matrix V.
TAU (local input) DOUBLE PRECISION, array, dimension LOCr(IV+K-1)
if INCV = M_V, and LOCc(JV+K-1) otherwise. This array contains the Householder scalars related to the Householder vectors. TAU is tied to the distributed matrix V.
T (local output) DOUBLE PRECISION array, dimension (NB_V,NB_V)
if STOREV = 'Col', and (MB_V,MB_V) otherwise. It contains the k-by-k triangular factor of the block reflector asso- ciated with V. If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is lower triangular.
WORK (local workspace) DOUBLE PRECISION array,
dimension (K*(K-1)/2)
 

FURTHER DETAILS

The shape of the matrix V and the storage of the vectors which define the H(i) is best illustrated by the following example with n = 5 and k = 3. The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit. The rest of the array is not used.

DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':

V( IV:IV+N-1, ( 1 ) V( IV:IV+K-1, ( 1 v1 v1 v1 v1 )
   JV:JV+K-1 ) = ( v1  1    )       JV:JV+N-1 ) = (     1 v2 v2 v2 )
                 ( v1 v2  1 )                     (        1 v3 v3 )
                 ( v1 v2 v3 )

                 ( v1 v2 v3 )

DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':

V( IV:IV+N-1, ( v1 v2 v3 ) V( IV:IV+K-1, ( v1 v1 1 )
   JV:JV+K-1 ) = ( v1 v2 v3 )       JV:JV+N-1 ) = ( v2 v2 v2  1    )
                 (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )
                 (     1 v3 )

                 (        1 )


 

Index

NAME
SYNOPSIS
PURPOSE
ARGUMENTS
FURTHER DETAILS

This document was created by man2html, using the manual pages.
Time: 21:52:13 GMT, April 16, 2011