Poster of Linux kernelThe best gift for a Linux geek
PZGERFS

PZGERFS

Section: LAPACK routine (version 1.5) (l) Updated: 12 May 1997
Local index Up
 

NAME

PZGERFS - improve the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solutions  

SYNOPSIS

SUBROUTINE PZGERFS(
TRANS, N, NRHS, A, IA, JA, DESCA, AF, IAF, JAF, DESCAF, IPIV, B, IB, JB, DESCB, X, IX, JX, DESCX, FERR, BERR, WORK, LWORK, RWORK, LRWORK, INFO )

    
CHARACTER TRANS

    
INTEGER IA, IAF, IB, IX, INFO, JA, JAF, JB, JX, LRWORK, LWORK, N, NRHS

    
INTEGER DESCA( * ), DESCAF( * ), DESCB( * ), DESCX( * ), IPIV( * )

    
DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * )

    
COMPLEX*16 A( * ), AF( * ), B( * ), WORK( * ), X( * )
 

PURPOSE

PZGERFS improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solutions.

Notes
=====

Each global data object is described by an associated description vector. This vector stores the information required to establish the mapping between an object element and its corresponding process and memory location.

Let A be a generic term for any 2D block cyclicly distributed array. Such a global array has an associated description vector DESCA. In the following comments, the character _ should be read as "of the global array".

NOTATION STORED IN EXPLANATION
--------------- -------------- -------------------------------------- DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
                               DTYPE_A = 1.
CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
                               the BLACS process grid A is distribu-
                               ted over. The context itself is glo-
                               bal, but the handle (the integer
                               value) may vary.
M_A (global) DESCA( M_ ) The number of rows in the global
                               array A.
N_A (global) DESCA( N_ ) The number of columns in the global
                               array A.
MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
                               the rows of the array.
NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
                               the columns of the array.
RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
                               row of the array A is distributed. CSRC_A (global) DESCA( CSRC_ ) The process column over which the
                               first column of the array A is
                               distributed.
LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
                               array.  LLD_A >= MAX(1,LOCr(M_A)).

Let K be the number of rows or columns of a distributed matrix, and assume that its process grid has dimension p x q.
LOCr( K ) denotes the number of elements of K that a process would receive if K were distributed over the p processes of its process column.
Similarly, LOCc( K ) denotes the number of elements of K that a process would receive if K were distributed over the q processes of its process row.
The values of LOCr() and LOCc() may be determined via a call to the ScaLAPACK tool function, NUMROC:

        LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
        LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ). An upper bound for these quantities may be computed by:

        LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A

        LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A

In the following comments, sub( A ), sub( X ) and sub( B ) denote respectively A(IA:IA+N-1,JA:JA+N-1), X(IX:IX+N-1,JX:JX+NRHS-1) and B(IB:IB+N-1,JB:JB+NRHS-1).

 

ARGUMENTS

TRANS (global input) CHARACTER*1
Specifies the form of the system of equations. = 'N': sub( A ) * sub( X ) = sub( B ) (No transpose)
= 'T': sub( A )**T * sub( X ) = sub( B ) (Transpose)
= 'C': sub( A )**H * sub( X ) = sub( B ) (Conjugate transpose)
N (global input) INTEGER
The order of the matrix sub( A ). N >= 0.
NRHS (global input) INTEGER
The number of right hand sides, i.e., the number of columns of the matrices sub( B ) and sub( X ). NRHS >= 0.
A (local input) COMPLEX*16 pointer into the local
memory to an array of local dimension (LLD_A,LOCc(JA+N-1)). This array contains the local pieces of the distributed matrix sub( A ).
IA (global input) INTEGER
The row index in the global array A indicating the first row of sub( A ).
JA (global input) INTEGER
The column index in the global array A indicating the first column of sub( A ).
DESCA (global and local input) INTEGER array of dimension DLEN_.
The array descriptor for the distributed matrix A.
AF (local input) COMPLEX*16 pointer into the local
memory to an array of local dimension (LLD_AF,LOCc(JA+N-1)). This array contains the local pieces of the distributed factors of the matrix sub( A ) = P * L * U as computed by PZGETRF.
IAF (global input) INTEGER
The row index in the global array AF indicating the first row of sub( AF ).
JAF (global input) INTEGER
The column index in the global array AF indicating the first column of sub( AF ).
DESCAF (global and local input) INTEGER array of dimension DLEN_.
The array descriptor for the distributed matrix AF.
IPIV (local input) INTEGER array of dimension LOCr(M_AF)+MB_AF.
This array contains the pivoting information as computed by PZGETRF. IPIV(i) -> The global row local row i was swapped with. This array is tied to the distributed matrix A.
B (local input) COMPLEX*16 pointer into the local
memory to an array of local dimension (LLD_B,LOCc(JB+NRHS-1)). This array contains the local pieces of the distributed matrix of right hand sides sub( B ).
IB (global input) INTEGER
The row index in the global array B indicating the first row of sub( B ).
JB (global input) INTEGER
The column index in the global array B indicating the first column of sub( B ).
DESCB (global and local input) INTEGER array of dimension DLEN_.
The array descriptor for the distributed matrix B.
X (local input and output) COMPLEX*16 pointer into the
local memory to an array of local dimension (LLD_X,LOCc(JX+NRHS-1)). On entry, this array contains the local pieces of the distributed matrix solution sub( X ). On exit, the improved solution vectors.
IX (global input) INTEGER
The row index in the global array X indicating the first row of sub( X ).
JX (global input) INTEGER
The column index in the global array X indicating the first column of sub( X ).
DESCX (global and local input) INTEGER array of dimension DLEN_.
The array descriptor for the distributed matrix X.
FERR (local output) DOUBLE PRECISION array of local dimension
LOCc(JB+NRHS-1). The estimated forward error bound for each solution vector of sub( X ). If XTRUE is the true solution corresponding to sub( X ), FERR is an estimated upper bound for the magnitude of the largest element in (sub( X ) - XTRUE) divided by the magnitude of the largest element in sub( X ). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error. This array is tied to the distributed matrix X.
BERR (local output) DOUBLE PRECISION array of local dimension
LOCc(JB+NRHS-1). The componentwise relative backward error of each solution vector (i.e., the smallest re- lative change in any entry of sub( A ) or sub( B ) that makes sub( X ) an exact solution). This array is tied to the distributed matrix X.
WORK (local workspace/local output) COMPLEX*16 array,
dimension (LWORK) On exit, WORK(1) returns the minimal and optimal LWORK.
LWORK (local or global input) INTEGER
The dimension of the array WORK. LWORK is local input and must be at least LWORK >= 2*LOCr( N + MOD(IA-1,MB_A) )

If LWORK = -1, then LWORK is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by PXERBLA.

RWORK (local workspace/local output) DOUBLE PRECISION array,
dimension (LRWORK) On exit, RWORK(1) returns the minimal and optimal LRWORK.
LRWORK (local or global input) INTEGER
The dimension of the array RWORK. LRWORK is local input and must be at least LRWORK >= LOCr( N + MOD(IB-1,MB_B) ).

If LRWORK = -1, then LRWORK is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by PXERBLA.

INFO (global output) INTEGER
= 0: successful exit
< 0: If the i-th argument is an array and the j-entry had an illegal value, then INFO = -(i*100+j), if the i-th argument is a scalar and had an illegal value, then INFO = -i.
 

PARAMETERS

ITMAX is the maximum number of steps of iterative refinement.

Notes =====

This routine temporarily returns when N <= 1.

The distributed submatrices op( A ) and op( AF ) (respectively sub( X ) and sub( B ) ) should be distributed the same way on the same processes. These conditions ensure that sub( A ) and sub( AF ) (resp. sub( X ) and sub( B ) ) are "perfectly" aligned.

Moreover, this routine requires the distributed submatrices sub( A ), sub( AF ), sub( X ), and sub( B ) to be aligned on a block boundary, i.e., if f(x,y) = MOD( x-1, y ): f( IA, DESCA( MB_ ) ) = f( JA, DESCA( NB_ ) ) = 0, f( IAF, DESCAF( MB_ ) ) = f( JAF, DESCAF( NB_ ) ) = 0, f( IB, DESCB( MB_ ) ) = f( JB, DESCB( NB_ ) ) = 0, and f( IX, DESCX( MB_ ) ) = f( JX, DESCX( NB_ ) ) = 0.


 

Index

NAME
SYNOPSIS
PURPOSE
ARGUMENTS
PARAMETERS

This document was created by man2html, using the manual pages.
Time: 21:53:24 GMT, April 16, 2011